3D Solid Texture Mapping

Maya 2013

Concept
• This texturing technique creates a three-dimensional volume of color
 • Irregularities of the texture are the result of noise/randomness in the color
 • Your model is “floated” inside that volume
 • The model picks up whatever texture is in that portion of the volume
 • It looks like your model is made of the material
 • Technique is variously known as “3d”, or “solid”, or “volumetric” texturing

Model a Thick Bowl
• Draw a curve and revolve it to make a bowl
 • Give the edge of your bowl a substantial thickness,
 • so we will be able to see the texture pass through it

Assign a 3d Texture
• >Window >Rendering Editors >Hypershade
 • >Create >Material (e.g., Blinn, or Phong)
 • Double click on the material’s icon to open its Attribute Editor
 • Next to Color of the material, click the checkered texture icon
 • >3D Textures
 • NOTE: Maya’s default is 2D Textures
 • Select 3D Textures instead
• In the 3D Textures menu that opens up
 • select the Marble procedure
 • This will automatically generate a marble-like volume of color

• Assign the material your model:
 • In the Hypergraph or Outliner,
 • middle-mouse drag the material’s icon on top your model in a modeling window

View the Rendered Texture
• First, view the hardware rendering:
 • In the Persp window
 • >Shading >Smooth Shade All
 • >Shading >Hardware Texturing
 • You should see your bowl with a marble texture on it
 • It probably looks very crude
 • To improve the quality of the hardware texturing…
 • Select your model
 • Go to the material node in the Attribute Editor
 • (for example, the blinn1 node)
 • >Hardware Texturing
 • >Texture Resolution = Highest (256x256)

• Now, render with the software renderer:
 • Select the Persp window
 • >Render >Render Current Frame

 • Notice how the texture appears to go through the model

Adjust Texture Parameters
• Double click on the marble texture icon to open its Attribute Editor
 • >Marble Attributes,
 • Change the Filler and Vein colors
 • Change the Vein Width
 • >Noise Attributes
 • “Noise” = the randomness of the pattern
• Try changing \textit{Amplitude}, or \textit{Ratio}, or \textit{Ripples}
 • All of these affect the appearance of the noise pattern

\textbf{3D Texture Node Placement}
• The texture volume is represented by a small cube icon in the modeling window
 • It may be very small
 • If your model is large, you may have to zoom way in to see it
 • This icon represents the \textit{placement} node of the texture

• Select the 3d texture placement node,
 • either by selecting the small cube icon in a modeling window,
 • or by selecting \texttt{place3dTexture} node in the Hypershade window

• Scale the placement node cube icon
 • Scaling makes the texture patterns larger
 • Also, in the Attribute Editor of \texttt{place3dTexture} node,
 • \texttt{>3D Texture Placement Attributes}
 • \texttt{>Fit to group bbox}
 • This makes your place node cube icon the same size as the bounding box of your model
 • You can then fine-tune the \textit{size} and placement of the icon
 • Try rotating or translating the placement node cube icon

\textbf{Sliding 3d Textures!}
• A 3d texture volume is an independent three-dimensional entity
 • \texttt{>Window >Outliner}
 • Notice that the surface and the placement nodes
 • are completely separate entities
 • This means…
 • \textbf{WARNING:}
 • By default, the texture volume is \textit{not} fixed to your model
 • If you transform your model
 • the texture volume does NOT transform with it
 • That is, as your model moves, rotates, or deforms,
 • it will slide \texttt{through} the volume of texture
 • and your texture will appear to slide over the surface
• Test for the problem
 • Software render your model with its 3D texture
 • Rotate your model a little, and re-render
 • The texture stays where it was,
 • while the model slides through it
 • The visual result is…
 • that the marble patterns appear to change

• WARNING & BUG:
 • The hardware renderer does NOT render correctly here
 • It shows the texture sticking to the model
 • the way you want it to
 • It does not show the true, nasty sliding effect

• Another test:
 • Select a surface point of your model
 • Translate it to deform the model
 • Re-render with the software renderer
 • The texture stays as it was,
 • while the model deforms through it

 • Note that the hardware renderer again renders inaccurately

Fixing the 3d Texture to the Model
• Solution is to create a “texture reference object”
 • This is an automatic duplicate of your model
 • It allows Maya to calculate deformations of the 3D texture,
 • so the texture remains fixed to your model,
 • no matter how you move or deform your model

• Select your model
• >Rendering
• >Texturing >Create Texture Reference object
 • Notice in the Outliner window
 • That there is now a name_reference node
• Try rotating your model and re-rendering
• The 3d texture should stay stuck to your model
 • and rotate with your rotating model

• **TIP:** Before the invention of texture reference objects
 • You got the same effect
 • by putting both your surface and your texture nodes
 • into a group
 • *This no longer works!*
 • Use the texture reference approach instead

Multiple Textures
• As with any texture mapping,
 • you can apply several types of textures to a single model

• Try adding a 3D solid bump map to your existing material
• In the Attribute Editor for your shader,
 • hit the checkered texture icon next to Bump Mapping
 • >3D Textures
 • Try using >Stucco
 • The *shaker* parameter controls how deep the pits are

• You now have a Marble 3d texture for color mapping
• And a Stucco 3d texture for bump mapping

• You can also combine 3D and 2D textures in one material